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Abstract

Two sellers, each with one identical good, compete sequentially to sell to

N ≥ 3 buyers. Buyers who do not get Seller 1’s good subsequently participate

in a second-price auction for Seller 2’s good. Seller 2 chooses a reserve price r,

and Seller 1 may choose any mechanism. We characterize the optimal mecha-

nism for Seller 1 as a function of r. The first-order approach typically fails, so

we develop new techniques. The optimal mechanism cannot be implemented

by a standard auction; instead we present a modified third-price auction imple-

mentation. We then characterize Seller 2’s optimal response and equilibrium

outcomes of competition in mechanisms.

1 Introduction

Sequential auctions to sell multiple units of identical units owned by different sellers

are common. On platforms like eBay, individual sellers run auctions ending at differ-

ent times. Auction houses such as Sotheby’s and Christie’s sell goods in a sequence of
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single-object auctions on behalf of different sellers. Much of the theoretical literature

on sequential auctions focuses on characterizing the equilibrium behavior of bidders

under the assumption that sellers are passive and nonstrategic. In this paper, we

analyze how this type of type of competition between sellers separated across time

affects the optimal design of selling mechanisms.

We study a simple environment. Two sellers, each with one unit of an identical

good, sell sequentially to N ≥ 3 buyers. Buyers have unit demands, with private

values independently drawn from a common distribution F with density f . A buyer

who fails to obtain the first seller’s good then participates in the second seller’s

auction. The second seller uses a second-price auction with reserve price r. The first

seller can choose any selling mechanism. Restricting the second seller to a second-

price auction, in which buyers have a dominant strategy to bid their value, means

that we can abstract from the issue of information leakage, where buyers may learn

something about each other’s values from the outcome of the first mechanism. We

will further assume that the second seller commits to her reserve price r before the

first mechanism runs, so our analysis is similarly robust to learning by the second

seller.

We start by deriving the revenue-maximizing pricing and allocation rule for the

first seller as a function of r. Hendricks and Wiseman [forthcoming] calculates that

optimal mechanism for the case where the second seller uses a second-price auction

with no reserve. Allowing for a non-trivial reserve price r2 introduces a significant

complication: the solution to the first seller’s optimization problem given first-order

incentive constraints turns out to violate global incentive compatibility when r is less

than ψ−1(0), the optimal reserve price in the single seller case. As a consequence, the

standard methods from Myerson [1981] are inadequate. Instead, we characterize the

solution using techniques that, like those of Bergemann et al. [2020] and Carroll and

Segal [2019], may be useful in other mechanism design settings where the first-order

approach fails.

The revenue-maximizing mechanism for the first seller is very different from that

of a monopoly seller. A monopolist optimally allocates to the buyer with the highest

reported type whenever that type is above a threshold that is independent of the
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number of bidders N . In our setting, the optimal allocation rule depends on the

first-, second-, and third-highest reported values, and it varies with N . A standard

auction with a reserve price clearly cannot implement that allocation rule. Instead,

we construct a modified third-price auction that implements the optimal mechanism.

Intuitively, a standard auction does not work well for the first seller because there

is an allocation externality. A bidder’s outside option is his endogenous payoff from

competing in the second auction. Allocating the first good to a high-value bidder

reduces the subsequent competition that other buyers face.1

Having derived that solution, we then use it to analyze a simple form of com-

petition in mechanism between the two sellers. We model the strategic timing as

follows: the second seller chooses her reserve price r, and the first seller responds

with an optimal mechanism given r. We show that an equilibrium exists and that

the equilibrium reserve price r is below the monopoly price ψ−1(0). In an example

with three buyers whose valuations are distributed uniformly on the unit interval, we

derive the equilibrium outcome of the strategic interaction between the sellers and

find that the second seller uses a reserve price to increase her revenue at the expense

of the first seller.

We formulate our model in terms of sale auctions, but we can equally interpret

it as a model of procurement auctions, where the bidders are potential sellers and

their types represent their production costs. An important motivating example is the

market for pharmaceuticals in Ecuador and other middle-income countries, studied

by Brugués [2020]. There, the first buyer is the government, who procures a supply

for the public market. Losing bidders compete to serve the private market, where

Bertrand competition yields the same outcome as a second-price auction with no

reserve. Our analysis may be especially relevant in this environment, because a

government agency may have greater ability to implement non-standard auction rules

than would a private seller.

The literature on competing mechanisms has mostly focused on markets where

1Work on auctions with more general externalities includes Jehiel et al. [1996, 1999], Jehiel and
Moldovanu [2003], and Figueroa and Skreta [2009]. Bergemann et al. [2020], Calzolari and Pavan
[2006], Carroll and Segal [2019], Dworczak [2020], and Virág [2016] contribute to the recent literature
on optimal design of auctions and disclosure rules when externalities result from resale.
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sellers with identical goods choose their mechanisms simultaneously and buyers then

select among them. Burguet and Sákovics [1999], studying the case of two sellers who

simultaneously choose reserve prices in second-price auctions, find that competition

for buyers lowers equilibrium reserve prices, but not to zero. McAfee [1993], Peters

and Severinov [1997], and Pai [2009] consider the general mechanism choice problem

and show that, when the number of sellers and buyers is large, second-price auctions

with zero reserve prices emerge as an equilibrium mechanism.

Closer to our paper, Kirkegaard and Overgaard [2008] study Black and de Meza

[1992]’s model of two sequential, second-price auctions when buyers have multi-unit

demands. They show that the early seller can increase her expected revenue by

offering an optimal buy-out price. Finally, Hendricks and Wiseman [forthcoming]

derive the first seller’s optimal mechanism in the special case of our model where the

second seller is passive and sets no reserve price. The solution there, which is simpler

to characterize because the failure of incentive compatibility under the first-order

approach does not arise, preserves the basic features of the optimal mechanism for

the case where r is nontrivial. Here we build on that analysis in order to make the

second seller a strategic agent.

2 Model

There are N ≥ 3 ex ante identical potential buyers, indexed by i, with unit demand

for an indivisible good. Each buyer i’s privately observed valuation for the good

Xi is independently drawn from distribution F with support [x, x̄], x ≥ 0. We will

sometimes refer to a buyer’s valuation as his type. We assume that F has a continuous

density f and that the virtual valuation ψ(x) ≡ x− (1− F (x))/f(x) is increasing in

x.

There are two sellers who each sell one unit of an identical good. They sell their

units sequentially over two periods, and we refer to them in the order that they sell.

The second seller uses a second-price auction with reserve price r ≥ x. Given r, the

first seller chooses his mechanism. Both sellers’ valuations of the good are normalized
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to zero. This structure is common knowledge. We will characterize the revenue-

maximizing mechanism for the seller in the first period, given that any buyer who

does not obtain the first object will participate in the auction for the second object.

For any buyer who did not obtain the first object, it is a weakly dominant strategy

in the second auction to submit a bid equal to his valuation. Further, the reserve

price r in the second auction is fixed before the first item is sold. As a result, buyers

have no incentive to bid untruthfully for the first item in order to affect behavior in

the auction.

Without loss of generality, we restrict attention to direct mechanisms in which

buyers report their types. Let x ∈ [x, x̄]N denote the vector of reported types. A

direct mechanism specifies, for any given x, the probability that each bidder i gets

the good Pi(x) ≥ 0 with ΣN
i=1Pi(x) ≤ 1 and the payment ti(x) that he must make.

We will work quite a bit with order statistics. Order the valuations from highest

to lowest X(1), X(2), . . . , X(N). It will also be useful to define the order statistics of

the competing valuations that a single buyer faces. Order the valuations of the other

N − 1 buyers from highest to lowest Y(1), Y(2), . . . , Y(N−1).

3 The Optimal Mechanism

Fix a buyer i with valuation Xi. Buyer i’s payoff in the second period, provided

that he did not get the first object, depends on whether or not the first object was

allocated to his competitor with the highest type Y(1). If so, then buyer i’s payoff,

max{Xi −max
{
r, Y(2)

}
, 0},

is a function of the highest remaining competitor’s type Y(2). If not, then buyer i’s

payoff is

max
{
Xi −max

{
r, Y(1)

}
, 0
}
.

Thus, the payoff to a buyer depends on the two highest valuations among his competi-

tors, and on whether or not those valuations exceed r. We denote the highest-type
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competitor of bidder i by j (so that Xj = Y(1)). Then the expected payoff to a bidder

i with type xi ≥ r, given reports x and excluding any payment to the first seller, is

Pi(x) · xi + Pj(x) ·max
{
xi −max

{
r, y(2)

}
, 0
}

+ (1− Pi(x)− Pj(x)) ·max
{
xi −max

{
r, y(1)

}
, 0
}
.

The payoff to a buyer i with type xi < r in the second period is 0, so the expected

payoff given x is just Pi(x) · xi.
It will be convenient notationally to re-specify payoffs and allocations in terms of

the vector of reported realizations of order statistics. Given vector of reported types

x, let x̂ denote the corresponding vector of reported types ordered from highest to

lowest (with ties broken arbitrarily), so that the k-th element of x̂, x̂k, is the k-th

highest reported type in x, x(k). Let f̂ denote the joint density of x̂. Similarly, define

ŷ as the ordered vector of competitors’ reported types facing a single buyer, with

joint density ĝ. Given a bidder’s type x and competitors’ types ŷ, let (x; ŷ) denote

the ordered vector of all N types. For each k ∈ {1, . . . , N} and x̂, let p̂k(x̂) denote

the probability that the mechanism assigns the object to the bidder with the k-th

highest report.

Using this notation, we can write the interim payoff of a type-x buyer who reports

truthfully when other buyers also report truthfully reports truthfully as follows, where

for readability we omit the dependence of p̂k on (x; ŷ):2

Π(x|x) = EŶ



1r>Ŷ1 · (p̂
1 · x+ (1− p̂1) · [x− r])

+ 1x>Ŷ1≥r>Ŷ2 ·
(
p̂1 · x+ p̂2 · [x− r] + (1− p̂1 − p̂2) ·

[
x− Ŷ1

])
+ 1x>Ŷ1≥Ŷ2≥r ·

(
p̂1 · x+ p̂2 ·

[
x− Ŷ2

]
+ (1− p̂1 − p̂2) ·

[
x− Ŷ1

])
+ 1Ŷ1≥x,r>Ŷ2 · (p̂

1 · [x− r] + p̂2 · x)

+ 1Ŷ1≥x>Ŷ2≥r ·
(
p̂1 ·

[
x− Ŷ2

]
+ p̂2 · x

)
+

N−1∑
k=2

1Ŷk≥x>Ŷk+1
·
(
p̂k+1 · x

)


.

2For completeness, set ŷk+1 = v when k = N − 1.
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The first three lines give the payoffs to the buyer when his type x is the highest, the

fourth and fifth lines are the payoffs when x is the second highest type, and the last

line is the payoff when x is the (k + 1)-th highest type, k ≥ 2.

A buyer of type x < r is never going to win the second auction. Therefore, his

expected payoff from reporting truthfully is

Π(x|x) = EŶ


1x>Ŷ1 · (p̂

1 · x)

+
N−1∑
k=1

1Ŷk≥x>Ŷk+1
·
(
p̂k+1 · x

)
 .

More generally, in Appendix A.1 we derive the payoff Π(q|x) to a buyer of type x

who reports his type as q.

The next step is to use the first-order incentive compatibility constraints to express

the transfer payments in terms of buyers’ payoffs and the allocation rule, and then

we find the allocation rule that maximizes the sum of payments. Let t(q) denote the

expected transfer to a seller from a buyer who reports q. From the envelope theorem,

the equilibrium payoff to a buyer of type x is

U(x) = U(x) +
x́

x

Π2(x′|x′)dx′, (1)

where Π2(x|x) is the partial derivative of Π(q|x) with respect to the second argument

(the buyer’s true type) evaluated at the truthful report. For x ≥ r, it is given by

Π2(x|x) = EŶ

[
1x>Ŷ1 + 1Ŷ1≥x>Ŷ2 ·

(
p̂1 + p̂2

)
+

N−1∑
k=2

1Ŷk≥x>Ŷk+1
· p̂k+1

]
,

and for x < r it is

Π2(x|x) = EŶ

[
1x>Ŷ1 +

N−1∑
k=1

1Ŷk≥x>Ŷk+1
· p̂k+1

]
.

That is, Π2(x|x) equals the equilibrium probability that a type-x buyer gets an object,
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either the first or the second. The ex ante expected buyer payoff is thus

E [U(X)] =
x́̄

x

x́

x

Π2(x′|x′)dx′f(x) =
x́̄

x

1−F (x)
f(x)

Π2(x|x) = E
[

1−F (X)
f(X)

Π2(X|X)
]
,

so the expected transfer is

Et(X) = E [Π(X|X)− U(X)] = t(x)− Π(x|x) + E
[
Π(X|X)− 1−F (X)

f(X)
Π2(X|X)

]
.

Plugging in the expressions for Π(x|x) and Π2(x|x), we get

Et(X) = t(x)− Π(x|x)

+ E


1X̂1=X ·

 ψ(X̂1)−max
{
r, X̂2

}
+ p̂1 ·

[
max

{
r, X̂2

}]
+p̂2 ·

[
max

{
r, X̂2

}
−max

{
r, X̂3

}] 
+ 1X̂2=X ·

(
p̂1 ·

[
ψ(X̂2)−max

{
r, X̂3

}]
+ p̂2 · ψ(X̂2)

)
+

N∑
k=3

1X̂k=X ·
(
p̂k · ψ(X̂3)

)


.

Because the probability that a given bidder has the k-th highest value is 1/N for each

k ∈ {1, . . . , N}, we can rewrite the expected transfer as

Et(X) = t(x)− Π(x|x)

+ 1
N
E

 ψ(X̂1)−max
{
r, X̂2

}
+ p̂1 ·

[
max

{
r, X̂2

}]
+p̂2 ·

[
max

{
r, X̂2

}
−max

{
r, X̂3

}] 
+ 1

N
E
(
p̂1 ·

[
ψ(X̂2)−max

{
r, X̂3

}]
+ p̂2 · ψ(X̂2)

)
+

N∑
k=3

1
N
E
(
p̂k · ψ(X̂k)

)
.

(2)

The seller maximizes expected revenue ER(X̂) = N · Et(X̂) subject to incentive

compatibility and individual rationality. Maximizing that integral pointwise yields

a solution that may fail to be globally incentive compatible (a buyer may prefer to

report a type far from his own), as we will see.
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Given any vector of ordered types x̂, taking the derivative of the seller’s expected

revenue with respect to p̂k (x̂) yields the following:

1. If x̂2 ≥ r,

∂ER(X̂)

δp̂1 (x̂)
=
∂ER(X̂)

δp̂2 (x̂)
= [ψ (x̂2) + x̂2 −max {x̂3, r}] f̂(x̂),

and for all k > 2,

∂ER(X̂)

δp̂k (x̂)
= ψ (x̂k) f̂(x̂).

2. If x̂1 ≥ r > x̂2,

∂ER(X̂)

δp̂1 (x̂)
= rf̂(x̂)

and for all k > 1,

∂ER(X̂)

δp̂k (x̂)
= ψ (x̂k) f̂(x̂).

3. If r > x̂1, for all k,

∂ER(X̂)

δp̂k (x̂)
= ψ (x̂k) f̂(x̂).

Global incentive compatibility is satisfied if a bidder cannot increase his probability of

getting an item (either the first or the second) by underreporting his type, or decrease

the probability by overreporting his type. Formally, the condition is that for any type

x and any reports q, q′ such that q > x > q′, we have Π2(q|x) ≥ Π2(x|x) ≥ Π2(q′|x).

We find that the solution to this pointwise maximization satisfies that condition when

r ∈ [ψ−1(0), x̄) but not when r ∈ (x, ψ−1(0)).

The source of the problem is a discontinuity in the marginal revenue expressions

above. If x̂2 ≥ r, then the marginal revenue from allocating to the highest or second-

highest bidder is ψ (x̂2)+ x̂2−max {x̂3, r}. If x̂1 ≥ r > x̂2, however, then the marginal

revenue from allocating to the highest bidder is r, independent of the exact values

of x̂2 and x̂3. If ψ(r) < 0, then as x̂2 moves from just below r to just above r,

marginal revenue jumps from strictly positive to strictly negative. That downward

switch drives the failure of global incentive compatibility, which we explore below.
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3.1 If r ∈
[
ψ−1(0), x̄

)
In the monopoly case, the optimal mechanism is to allocate the object to the bidder

with the highest valuation if and only if ψ(x̂1) ≥ 0. Thus, if r ∈ [ψ−1(0), x̄), then

the second seller is using a reserve price higher than the optimal reserve price in

the standard mechanism design setting. In this case, the solution to the first seller’s

pointwise maximization problem is to

• allocate to the top bidder if x̂1 ≥ r > x̂2 or r > x̂1 ≥ ψ−1(0), because the

marginal revenue for p̂1 is r > 0 or ψ (x̂1) > 0, respectively;

• allocate to one of the top two bidders if x̂2 ≥ r, because the marginal revenue

for both p̂1 and p̂2 is ψ (x̂2) + x̂2 −max {x̂3, r} ≥ ψ (x̂2) > 0;

and not to allocate otherwise. If the seller uses this rule (and any method of breaking

indifferences between allocating to the highest and second-highest bidders), then it

is straightforward to show that the probability of getting an item (first or second) is

increasing in the report. Thus, global incentive compatibility is satisfied.

Theorem 1. If the reserve price in the second auction is r ∈ [ψ−1(0), x̄), then the

following is an optimal (direct) mechanism for the first seller. (Ties are broken ran-

domly.)

Allocation rule: The seller allocates the good if and only if ψ
(
x(1)

)
≥ 0; allo-

cation in that case is to the bidder with the highest valuation if x(2) < r, and it is

to either the bidder with the highest valuation or the bidder with the second-highest

valuation if x(2) ≥ r.

Transfers:

1. If ψ
(
x(1)

)
≥ 0 and x(2) < r, then the bidder with the highest valuation pays

max
{
ψ−1(0), x(2)

}
and the other bidders pay nothing.

2. If x(2) ≥ r, then the bidder who receives the object pays max
{
r, x(3)

}
and the

other bidders pay nothing.

3. If the good is not allocated, then there are no payments.
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The mechanism in Theorem 1 can be implemented through a hybrid second- and

third-price auction with reserve prices: if the highest bid is above ψ−1(0), then the

item goes to the highest bidder at a price equal to either 1) the maximum of ψ−1(0)

and the second-highest bid if that second-highest bid is below r, or 2) the maximum

of r and the third-highest bid if the second-highest bid is above r.

3.2 If r ∈
(
x, ψ−1(0)

)
In this case, the second seller uses a reserve price lower than the optimal reserve

price in the standard mechanism design setting, and the solution to the pointwise

maximization problem turns out to violate incentive compatibility. The following

notation will be useful.

Definition 1. For x ∈ [x, x̄], define a(x) ∈ [x, x̄] as

a(x) ≡ min {a ≥ x : a+ ψ(a) ≥ x} .

Note that when ψ (r) < 0, a(r) is the valuation that solves a+ ψ(a) = r. In that

case, a(r) > r and a(r) < ψ−1(0). Given this definition, the solution to the pointwise

maximization problem is to

• allocate to the top bidder if x̂1 ≥ r > x̂2;

• allocate to one of the top two bidders if x̂3 ≥ r and x̂2 + ψ (x̂2)− x̂3 ≥ 0;

• allocate to one of the top two bidders if x̂2 ≥ a(r) and r > x̂3, because the

marginal revenue for both p̂1 and p̂2 is x̂2 +ψ (x̂2)− r ≥ a(r) +ψ (a(r))− r = 0;

• not allocate if a(r) > x̂2 and r > x̂3, because the marginal revenue for both p̂1

and p̂2 is x̂2 + ψ (x̂2)− r < a(r) + ψ (a(r))− r = 0;

and not to allocate otherwise.

This rule is not incentive compatible. To see why, suppose that bidder i with type

x between r and a(r) considers deviating to a report q below r. If x is the highest

type, then bidder i is certain to get an item with either report: the first item if he
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reports x, the second item if he reports q. If x is the third-highest or lower order

type, then bidder i will get nothing with either report. He will also get nothing if x

is the second-highest type and x̂3 is greater than r, because the first unit will not be

allocated at either report (the marginal revenue from doing so is negative), so bidder

i loses the second auction to the bidder with the highest type. The non-monotonicity

arises when x is the second-highest type and x̂3 is less than r. If bidder i reports

truthfully, then the first unit is not allocated and he loses the second auction to the

bidder with the highest type. But if he reports a type below r, then the rule above

specifies that the highest bidder gets the first unit, and then bidder i will win the

second. Thus, a bidder with a type between r and a(r) is more likely to get an item

by reporting a type below r than by reporting truthfully.

More formally, incentive compatibility requires the second-order condition that

ˆ x

q

Π2(x′|x′)dx′ ≥
ˆ x

q

Π2(q|x′)dx′, (3)

for all x, q ∈ [x, x̄], where Π2(q|x), the derivative of the gross payoff Π(q|x) with

respect to the buyer’s true type, corresponds to the probability that buyer of type x

gets an item (either the first or the second) when reporting type q. (See Section A.3.)

The allocation rule derived above violates that condition at x = r and any q < r.

We proceed to find the optimal mechanism through a process of “guess and verify.”

First, we guess that the constraints in Expression 3 bind only for types x below a(r);

that for type r the constraint binds only for underreports q < r; and that for the rest

of the types x ≤ a(r) the constraint binds only for a marginal underreport, q = x− ε
for vanishingly small ε. Those guesses yield a continuum of constraints that take the

form ˆ r

q

Π2(x′|x′)dx′ ≥
ˆ r

q

Π2(q|x′)dx′ (4)

for each q ∈ [x, r) (let λr,q denote the corresponding Lagrange multiplier); and

Π2(x|x) ≥ lim sup
ε↘0

Π2(x− ε|x) (5)
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for each x ∈ (x, a(r)] (multiplier µx). The constraints reflect the idea that a buyer

must have a weakly higher chance of getting an object if he reports truthfully than if

he underreports.3

We derive first-order conditions by maximizing Expression 2 subject to the con-

straints in Expressions 4 and 5. We then guess the values of λr,q and µx, derive the

solution using those guesses, and show that it satisfies incentive compatibility. (See

Appendix A.) The optimal mechanism corresponds to pointwise maximization except

when there are either one or two bids above the reserve price r. When x̂1 > r > x̂3

and x̂2 is either below r or just above it (between r and a(r)), then the constraints

in Expressions 4 and 5 bind and the allocation rule needs to be adjusted. Depending

on the value of r, the solution is to allocate either in all of these cases (regardless of

the exact valuations of the bidders) or in none of them.

The intuition for this solution is as follows. We would like to allocate the good

to the highest bidder when x̂1 > r > x̂2, because the marginal revenue r from doing

so is positive, but not when a(r) > x̂2 ≥ r > x̂3, because in this case the marginal

revenue is negative (i.e., x̂2 + ψ (x̂2)− r < 0). Roughly, the constraints in Expression

4 mean that if we allocate when x̂1 = x∗ and x̂2 < r, then we also have to allocate

when x̂1 = x∗ and x̂2 = r: otherwise a bidder with type r would be more likely to

get an item by underreporting. The constraints in Expression 5 then imply that we

must also allocate when x̂2 is just above r, and then when x̂2 is just above that value,

and so on. Iterating those constraints, we conclude that if we allocate when x̂1 = x∗

and x̂2 < r, then we must also allocate when we replace x̂2 with any higher value,

including values above x∗: that is, allocate whenever x̂1 ≥ x∗.

The seller’s maximization problem, then, consists of finding the optimal cutoff x∗

such that when x̂3 < r and x̂2 < a(r), the seller allocates if and only if x̂1 ≥ x∗. The

resulting revenue is N · F (r)N−2 times Zr(x∗), where the function Zr(x∗) is defined

as follows:

3Note that for type r, there is a redundancy: µr and λr,r−0 refer to the same constraint. In the
proofs, it will be convenient notationally to use one constraint in some cases and the other in other
cases.
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Definition 2. For r ∈ [x, ψ−1(0)) and x∗ ∈ [r, x̄], define

Zr(x∗) ≡ 1

N ·F (r)N−2E
[
1X̂1≥r>X̂2

· r + 1X̂1≥r,a(r)>X̂2≥r>X̂3
·
(
ψ
(
X̂2

)
+ X̂2 − r

)]
= rF (r) [1− F (x∗)] + (N − 1)

x́̄

x∗

(
min{x,a(r)}´

r

[ψ(x′) + x′ − r]f(x′)dx′

)
f(x)dx.

To interpret Zr(x∗), note that the revenue N · F (r)N−2 Zr(x∗) is the marginal

revenue r when x̂1 ≥ x∗ and x̂2 < r times the probability of that event, plus the

(negative) expected marginal revenue when x̂1 ≥ x∗ and a(r) > x̂2 ≥ r > x̂3 times

the probability of that event. (Recall that when x̂2 ≥ a(r), we want to allocate

regardless, so we do not need to include that case in the revenue maximization.) The

function Zr(x∗) is quasiconvex, so the optimal x∗ is at a corner: either x∗ = r or

x∗ = x̄. Observe that Zr(x̄) = 0 (because x̂1 cannot exceed x̄). Thus, x∗ = x̄ is

optimal if and only if Zr(r) ≤ 0, because then revenue is higher at x∗ = x̄ than at

x∗ = r. If Z(r) ≥ 0, then x∗ = r is optimal. That logic forms the basis for our guesses

of the values of the Lagrange multipliers.

The value of Zr(r) is decreasing in the number of bidders N . When N is large

enough, all else equal, the optimal cutoff x∗ equals x̄, and the item is not allocated

unless the second-highest bid is at least a(r). We have not been able to establish

whether or not Zr(r) is monotonic in the reserve price r. We do know, however, that

for small enough values of r, again the optimal cutoff x∗ equals x̄. The reason is

that Zr(r) is continuous and strictly negative at r = x. For values of r such that

Zr(r) < 0, the seller allocates if and only if

ψ (x̂2) + x̂2 −max {r, x̂3} ≥ 0. (6)

When Zr(r) > 0, then the seller allocates either if Condition 6 holds or if x̂1 ≥ r > x̂3.

We summarize the optimal mechanism in the following two theorems.

Theorem 2. If the reserve price in the second auction is r ∈ (x, ψ−1(0)), and Zr(r) ≤
0, then the following is an optimal (direct) mechanism for the first seller. (Ties are

broken randomly.)
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Allocation rule: The seller allocates the good to the bidder with the second-

highest valuation if ψ (x̂2) + x̂2 −max {r, x̂3} ≥ 0, and does not allocate otherwise.

Transfers:

1. If x(3) ≤ r and the good is allocated (x(2) ≥ a (r)), then the bidder with the

highest valuation pays a (r)−r > 0, the bidder with the second-highest valuation

pays a (r) > 0, and the other bidders pay nothing.

2. If x(3) ∈ (r, ψ−1(0)) and the good is allocated (x(2) ≥ a
(
x(3)

)
), then the bidder

with the highest valuation pays a
(
x(3)

)
− x(3) > 0, the bidder with the second-

highest valuation pays a
(
x(3)

)
> 0, and the other bidders pay nothing.

3. If ψ
(
x(3)

)
≥ 0 (in which case the good is allocated because x(2) ≥ a

(
x(3)

)
= x(3)),

then the bidder with the second-highest valuation pays x(3) > 0 and the other

bidders pay nothing.

4. If the good is not allocated, then there are no payments.

Theorem 3. If the reserve price in the second auction is r ∈ (x, ψ−1(0)), and Zr(r) ≥
0, then the following is an optimal (direct) mechanism for the first seller. (Ties are

broken randomly.)

Allocation rule: The seller allocates to the bidder with the highest valuation if

x̂1 ≥ r > x̂2, allocates to either the bidder with the highest valuation or the bidder

with the second-highest valuation if x̂2 ≥ r > x̂3, allocates to the bidder with the

second-highest valuation if x̂3 ≥ r and ψ (x̂2) + x̂2 − x̂3 ≥ 0, and does not allocate

otherwise.

Transfers:

1. If x̂1 ≥ r > x̂2, then the bidder with the highest valuation pays r and the other

bidders pay nothing.

2. If x̂2 ≥ r > x̂3, then the bidder who receives the object pays r and the other

bidders pay nothing.
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3. If x(3) ∈ (r, ψ−1(0)) and the good is allocated (x(2) ≥ a
(
x(3)

)
), then the bidder

with the highest valuation pays a
(
x(3)

)
− x(3) > 0, the bidder with the second-

highest valuation pays a
(
x(3)

)
> 0, and the other bidders pay nothing.

4. If ψ
(
x(3)

)
≥ 0 (in which case the good is allocated because x(2) ≥ a

(
x(3)

)
= x(3)),

then the bidder with the second-highest valuation pays x(3) > 0 and the other

bidders pay nothing.

5. If the good is not allocated, then there are no payments.

This mechanism is similar to the optimal mechanism derived in Hendricks and

Wiseman [forthcoming] for the special case of no reserve price in the second auction,

but it has some interesting new features. The optimal withholding rule now is a

function of the first-, second-, and third-highest values, rather than just the second-

and third-highest. Further, the withholding rule now varies with the number of

bidders, unlike both the Hendricks and Wiseman [forthcoming] case and the standard

auction environment: the value of Zr(r) is decreasing in N .

4 Implementing the Optimal Mechanism

In this section, we show that the optimal mechanism can be implemented with a

modified third-price auction. For simplicity, we focus on the case where Zr(r) ≤ 0

(for example, where there is a low reserve price r ≈ x in the second auction), but the

arguments extend to the case Zr(r) > 0.

In order to implement the payments and allocation rule from Theorem 2 define

the modified third-price auction as follows: each buyer submits a bid in [x, x̄]. As a

function of the vector of bids b, the good is allocated to the second-highest bidder if

and only if

ψ
(
b(2)

)
+ b(2) ≥ max

{
r, b(3)

}
).

If the unit is not allocated, then no one makes any payments. If the unit is allocated,

then the payments are based on the reserve price and the third-highest bid, b(3).
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When ψ(b(3)) > 0, the highest bidder pays nothing and the second-highest bidder

pays b(3); when ψ(b(3)) < 0, then the highest bidder pays

a
(
max

{
r, b(3)

})
−max

{
r, b(3)

}
> 0

and the second-highest bidder pays a
(
max

{
r, b(3)

})
.

Theorem 4. If the reserve price in the second auction is r ∈ (x, ψ−1(0)), and Zr(r) ≤
0, then truthful bidding is an equilibrium of the modified third-price auction, and that

equilibrium yields the optimal expected revenue for the first seller.

Consider, for example, the highest-valuation buyer in the case where x(3) < r and

the item is allocated (x(2) ≥ a(r)). Truthfully bidding b = x(1) yields a payoff of

x(1) − r − [a(r)− r] = x(1) − a(r);

the bidder transfers a(r) − r) to the first seller and then wins the second auction at

the reserve price r. Any bid above x(2) yields that same payoff. A bid between a(r)

and x(2) also results in payoff x(1) − a(r): the bidder gets the first item and transfers

a(r) to the first seller. Any bid below a(r) gives a lower payoff, x(1) − x(2), because

the first item will not be allocated, no transfers will be made to the first seller, and

the bidder will win the second item at price x(2). The other cases are similar.

5 Equilibrium

In this section, we consider a simple form of strategic interaction between sellers,

where the second seller chooses a reserve price and the first seller best responds as in

Theorems 1, 2, and 3. We study whether or not an equilibrium exists and what we

can say about its properties. In particular, we ask whether the equilibrium reserve

price r∗ is less than ψ−1(0). If so, then the first seller’s equilibrium mechanism will

be impossible to implement with a standard auction.

We begin by computing the equilibrium in an example where there are three

buyers whose valuations are distributed uniformly between zero and one. That is,
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N = 3 and F (x) = x]. In that case, virtual valuations are given by ψ(x) = 2x− 1, so

ψ−1(0) = 1/2. Furthermore, for r ∈ (0, 1/2), we have that

a(r) = (r + 1)/3

and

Zr(r) = − 1

27
(1− 2r)2 (8− 7r) + r2(1− r).

That value is negative (and thus the optimal allocation rule for the first seller is

x∗ = 1) when r ≤ r̃ ≈ 0.263, where r̃ is the solution to r3−33r2 + 39r−8 = 0. When
1
2
> r ≥ r̃, the optimal allocation rule for the first seller is x∗ = r. For r ≥ 1

2
, the

first seller allocates whenever the highest valuation is above 1
2
.

We can then calculate the expected revenues of the second seller (see appendix

for details) as a function of her reserve price r, given that the first seller’s mechanism

is a best reply. Her expected revenue is

R2(r) =
1

4
+

3

2
r2 − 4r3 +

9

4
r4

when r ∈ [1/2, 1]; it is

R2(r) =
125

432
− 7

27
r +

19

9
r2 − 124

27
r3 +

263

108
r4

when r ∈ [r̃, 1/2); and it is

R2(r) =
125

432
+

8

9
r2 +

5

27
r3 − 47

36
r4

when r ∈ [0, r̃]. The graph of the revenue function is illustrated in Figure 1.

The first point to note is that the revenue function is continuous at r = 1/2. The

reason is that the allocation probabilities for the first and second units are continuous

in r. The second point to note is that the revenue function exhibits a downward dis-

continuity at r̃. This discontinuity comes from the discrete increase in the probability

of the first good being allocated when x∗ jumps from x∗ = 1 to x∗ = r̃. All else equal,
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Figure 1: Seller 2’s revenue as a function of r

the second seller does better when the first seller does not allocate because then she

has a higher chance of earning max{r, x(2)} instead of max{r, x(3)}.
Revenue in our example has two local maxima. Above r̃, revenue of 0.298 is

attained at r ≈ 0.320. Revenue is increasing in r on [0, r̃], so the maximum value,

0.341, is attained at r̃. Thus, in equilibrium the second seller chooses reserve price

r∗ = r̃ ≈ 0.263 and the first seller responds as in Theorem 2. That is, the first

seller allocates if 3x(2)− 1 ≥ max{r∗, x(3)} and not otherwise. The resulting expected

revenue for the first seller is approximately 0.343.

When there is no reserve price in the second auction, Hendricks and Wiseman

([forthcoming]) calculate that the expected revenue of the first seller in this example

is approximately 0.382 and the expected revenue of the second seller is approximately

0.289. Thus, relative to using no reserve price, the second seller increases her revenue

by 18% by setting r∗, while reducing the first seller’s revenue by 10%. The fact that

raising the reserve price in the second auction, which reduces the competition facing

the first seller, turns out to lower the first seller’s revenue may seem counterintu-

itive. The explanation is that the reserve price also reduces the expected surplus

available to buyers in the second auction. Because the first seller appropriates some

of that surplus through the threat of withholding the first object, her revenue falls.
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In equilibrium, the negative effect of surplus reduction dominates the positive effect

of reduced competition in this example.

In a monopoly setting, the seller sets the optimal reserve price to equate the

expected loss from not selling to the expected gain from selling at a higher price.

This tradeoff is determined solely by the distribution of buyer values F . However, in

our model, the distribution of buyer values that the second seller faces is endogenous,

and she has to take into account how her reserve price affects the probability that the

first seller will allocate her unit. In the uniform example above, we quantify those

tradeoffs and calculate the optimal reserve price for the second seller. It is not clear

what we can say more generally. The second seller will certainly want to avoid the

jump in the allocation probability when the first seller’s optimal cutoff switches from

x∗ = x̄ to x∗ = r, but exactly where the equilibrium reserve price lies is likely to

depend on the properties of F . We can show, however, that an equilibrium exists

and that the first seller uses a withholding rule that cannot be implemented with a

simple reserve price (as long as the optimal static reserve price is nontrivial).4

Theorem 5. An equilibrium of the game between sellers exists. If in addition ψ−1(0) >

x, then seller 2’s equilibrium reserve price r∗ < ψ−1(0).

For intuition, recall that ψ−1(0) is the optimal reserve price for a single seller facing

distribution F . The second seller in our setting chooses r below that level because

she faces a worse distribution of buyer values: the highest or second-highest bidder

may have already obtained an item from the first seller. At r = ψ−1(0), lowering r

has a first order positive effect on the second seller’s revenue conditional on the first

seller’s allocation rule and only a second order effect on that allocation rule.

6 Concluding Remarks

We analyze the outcome of competition in mechanisms when sales are sequential,

in a setting where 1) there are two sellers, 2) the second seller choose the reserve

4If the minimum valuation x has a positive virtual valuation, then it is an equilibrium for both
sellers to allocate to the highest bidder.
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price in a second-price auction while the first seller may use any mechanism, and

3) the second seller is the first mover, committing to a reserve price that the first

seller then best responds to. We hope to generalize our model in all three directions.

Information leakage, which is conceptually distinct from the spillover effect between

sequential sellers that drives our analysis, becomes a complication. In general, the

best response for the second seller depends on what information about the bidders’

types is disclosed after the first period, and buyers may worry that information about

their types revealed in their bids will influence the future bids of their competitors.

Allowing the second seller to choose any ex post incentive compatible mechanism

would relax the restriction on her strategy space while preserving robustness to the

possibility of information leakage, so that we could consider competition under other

ways of modeling the timing of moves and information revelation. Similarly, in the

case of more than two sellers, restricting later sellers to ex post incentive compatible

mechanisms may be a tractable way to separate the effects of sequential competition

in mechanisms from those of information leakage.
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A Proving Theorems 1, 2, and 3

A.1 Payoff from false report

We derive the payoff to a type-x buyer who reports his type as q. If x ≥ r and q ≥ x,

then

Π(q|x) =
´

[x,x̄]N−1:x>ŷ1

(
x−max {ŷ1, r}+ p̂1 ((q; ŷ)) ·max {ŷ1, r}
+p̂2 ((q; ŷ)) · [max {ŷ1, r} −max {ŷ2, r}]

)
ĝ(ŷ)

+
´

[x,x̄]N−1:q>ŷ1≥x>ŷ2

(p̂1 ((q; ŷ)) · x+ p̂2 ((q; ŷ)) · [x−max {ŷ2, r}]) ĝ(ŷ)

+
´

[x,x̄]N−1:q>ŷ1>ŷ2≥x
(p̂1 ((q; ŷ)) · x) ĝ(ŷ)

+
´

[x,x̄]N−1:ŷ1≥q≥x>ŷ2

(p̂1 ((q; ŷ)) · [x−max {ŷ2, r}] + p̂2 ((q; ŷ)) · x) ĝ(ŷ)

+
N−1∑
k=1

[ ´
[x,x̄]N−1:ŷk≥q>ŷk+1,ŷ2≥x

(
p̂k+1 ((q; ŷ)) · x

)
ĝ(ŷ)

]
.

If x ≥ r and q < x, then

Π(q|x) =
´

[x,x̄]N−1:q>ŷ1

(
x−max {ŷ1, r}+ p̂1 ((q; ŷ)) ·max {ŷ1, r}
+p̂2 ((q; ŷ)) · [max {ŷ1, r} −max {ŷ2, r}]

)
ĝ(ŷ)

+
N−1∑
k=1

 ´
[x,x̄]N−1:ŷk≥q>ŷk+1,x>ŷ1


x−max {ŷ1, r}

+p̂1 ((q; ŷ)) · [max {ŷ1, r} −max {ŷ2, r}]
+p̂k+1 ((q; ŷ)) ·max {ŷ1, r}

 ĝ(ŷ)


+

N−1∑
k=1

[ ´
[x,x̄]N−1:ŷk≥q>ŷk+1,ŷ1≥x>ŷ2

(
p̂1 ((q; ŷ)) · [x−max {ŷ2, r}]

+p̂k+1 ((q; ŷ)) · x

)
ĝ(ŷ)

]

+
N−1∑
k=2

[ ´
[x,x̄]N−1:ŷk≥q>ŷk+1,ŷ2≥x

(
p̂k+1 ((q; ŷ)) · x

)
ĝ(ŷ)

]
.
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If x < r, then

Π(q|x) =

ˆ

[x,x̄]N−1:q>ŷ1

(
p̂1 ((q; ŷ)) · x

)
ĝ(ŷ)+

N−1∑
k=1

 ˆ

[x,x̄]N−1:ŷk≥q>ŷk+1

(
p̂k+1 ((q; ŷ)) · x

)
ĝ(ŷ)

 .
A.1.1 Π2(q|x)

The derivative of the payoff with respect to its second argument (the buyer’s true

type), Π2(q|x), will be used below. If x ≥ r and q ≥ x, then we calculate that

derivative as

Π2(q|x) =
´

[x,x̄]N−1:x>ŷ1

ĝ(ŷ) +
´

[x,x̄]N−1:ŷ1≥x>ŷ2

(p̂1 ((q; ŷ)) + p̂2 ((q; ŷ))) ĝ(ŷ)

+
´

[x,x̄]N−1:q>ŷ1>ŷ2≥x
(p̂1 ((q; ŷ))) ĝ(ŷ)

+
N−1∑
k=1

[ ´
[x,x̄]N−1:ŷk≥q>ŷk+1,ŷ2≥x

(
p̂k+1 ((q; ŷ))

)
ĝ(ŷ)

]
.

If x ≥ r and q < x, then

Π2(q|x) =
´

[x,x̄]N−1:x>ŷ1

ĝ(ŷ) +
N−1∑
k=1

[ ´
[x,x̄]N−1:ŷk≥q>ŷk+1,ŷ1≥x>ŷ2

(
p̂1 ((q; ŷ))

+p̂k+1 ((q; ŷ))

)
ĝ(ŷ)

]

+
N−1∑
k=2

[ ´
[x,x̄]N−1:ŷk≥q>ŷk+1,ŷ2≥x

(
p̂k+1 ((q; ŷ))

)
ĝ(ŷ)

]
.

If x < r, then

Π2(q|x) =

ˆ

[x,x̄]N−1:q>ŷ1

(
p̂1 ((q; ŷ))

)
ĝ(ŷ) +

N−1∑
k=1

 ˆ

[x,x̄]N−1:ŷk≥q>ŷk+1

(
p̂k+1 ((q; ŷ))

)
ĝ(ŷ)

 .
A.2 Convexity

We show that the payoff Π(q|x) is convex in its second argument (the buyer’s true

type). It follows that U(x), as the maximum of convex functions, is also convex. It
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is therefore absolutely continuous and so differentiable almost everywhere, and thus

Expression 1 is valid.

The derivative of Π(q|x) with respect to the buyer’s type x corresponds to the

probability that the buyer gets an item (either the first or the second). Conditional

on the report, that probability is increasing in x because a buyer with a higher

valuation is more likely to win the second auction if he does not win the first item.

Formally, the second derivative of the payoff Π(q|x) with respect to the buyer’s true

type, Π22(q|x), when x ≥ r and q ≥ x is given by

Π22(q|x) =
´

[x,x̄]N−1:ŷ1=x

(1− p̂1 ((q; ŷ))− p̂2 ((q; ŷ))) ĝ(ŷ)

+
´

[x,x̄]N−1:q>ŷ1,ŷ2=x

(p̂2 ((q; ŷ))) ĝ(ŷ) +
´

[x,x̄]N−1:ŷ1≥q,ŷ2=x

(p̂1 ((q; ŷ))) ĝ(ŷ).

The first integral represents the increase in the chance of getting an item when the

buyer’s type moves from just below the highest competitor’s type ŷ1 to just above

it: if x > ŷ1, then the buyer gets an item for sure because he would win the second

auction. If x < ŷ1, then he gets an item only if he or the highest competitor gets

the first item. Similarly, the second and third integrals represent the increase in the

chance of getting an item when the buyer’s type moves from just below the second

highest competitor’s type ŷ2 to just above it. Each of the three integrals is weakly

positive, so Π22(q|x) ≥ 0.

Analogously, when x ≥ r and q < x, Π22(q|x) is given by

Π22(q|x) =
N−1∑
k=1

[ ´
[x,x̄]N−1:ŷk≥q>ŷk+1,ŷ1=x

(
1− p̂1 ((q; ŷ))− p̂k+1 ((q; ŷ))

)
ĝ(ŷ)

]

+
N−1∑
k=2

[ ´
[x,x̄]N−1:ŷk≥q>ŷk+1,ŷ2=x

(p̂1 ((q; ŷ))) ĝ(ŷ)

]
≥ 0.

Finally, if x < r, then Π22(q|x) = 0: the buyer will never win the second auction,

and his chance of getting the first item depends on his report but not his true type.

Thus, Π(q|x) is convex in the buyer’s valuation, as desired.
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A.3 Incentive compatibility

Truthful reporting is a best response if and only if for all x, q ∈ [x, x̄],

U(x) = Π(x|x)−t(x) ≥ (q|x)−t(q) = U(q)+Π(q|x)−Π(q|q) = U(q)+

xˆ

q

Π2(q|x′)dx′.

(7)

By substituting (1) into (7), we can rewrite the incentive compatibility condition

as ˆ x

q

Π2(x′|x′)dx′ ≥
ˆ x

q

Π2(q|x′)dx′.

That condition holds if for any type x and any reports q, q′ such that q > x > q′,

we have Π2(q|x) ≥ Π2(x|x) ≥ Π2(q′|x). The allocation rules in Theorems 1, 2, and

3 have the property that p̂k (x̂) = 0 when k > 2 for all x̂, so the expressions for

Π2(q|x)− Π2(x|x) simplify. If x ≥ r and q > x, then

Π2(q|x)− Π2(x|x)

=
´

[x,x̄]N−1:ŷ1≥x>ŷ2

(p̂1 ((q; ŷ)) + p̂2 ((q; ŷ))− p̂1 ((x; ŷ))− p̂2 ((x; ŷ))) ĝ(ŷ)

+
´

[x,x̄]N−1:q>ŷ1>ŷ2≥x
(p̂1 ((q; ŷ))) ĝ(ŷ) +

´
[x,x̄]N−1:ŷ1≥q>ŷ2≥x

(p̂2 ((q; ŷ))) ĝ(ŷ).

(8)

If x ≥ r and q < x, then

Π2(x|x)− Π2(q|x)

=
´

[x,x̄]N−1:ŷ1≥x>q>ŷ2

(p̂1 ((x; ŷ)) + p̂2 ((x; ŷ))− p̂1 ((q; ŷ))− p̂2 ((q; ŷ))) ĝ(ŷ)

+
´

[x,x̄]N−1:ŷ1≥x>ŷ2≥q
(p̂1 ((x; ŷ)) + p̂2 ((x; ŷ))− p̂1 ((q; ŷ))) ĝ(ŷ).

(9)

Because the allocation rules in Theorems 1, 2, and 3 have the property that p̂1 (x̂) +

p̂2 (x̂) is weakly increasing in x̂1 and x̂2, (8) and (9) are positive, as desired.

Next consider the case x < r. The allocation rules in Theorems 1, 2, and 3 have
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the additional property that p̂2 (x̂) = 0 when x̂2 < r, so for q > x we have

Π2(q|x)− Π2(x|x)

=
´

[x,x̄]N−1:x>ŷ1

(p̂1 ((q; ŷ))− p̂1 ((x; ŷ))) ĝ(ŷ)

+
´

[x,x̄]N−1:q>ŷ1≥x
(p̂1 ((q; ŷ))) ĝ(ŷ) +

´
[x,x̄]N−1:ŷ1≥q

(p̂2 ((q; ŷ))) ĝ(ŷ).

(10)

Finally, if x < r and q < x, then

Π2(x|x)− Π2(q|x)

=
´

[x,x̄]N−1:q>ŷ1

(p̂1 ((x; ŷ))− p̂1 ((q; ŷ))) ĝ(ŷ) +
´

[x,x̄]N−1:x>ŷ1≥q
(p̂1 ((x; ŷ))) ĝ(ŷ).

(11)

Because the specified allocation rules have the property that p̂1 (x̂) is weakly increas-

ing in x̂1, (10) and (11) are both positive as well. We conclude that the mechanisms

in Theorems 1, 2, and 3 are incentive compatible. It remains only to show that

the allocation rules solve the seller’s revenue maximization problem. We made that

argument for the r ∈ [ψ−1(0), x̄) case in Section 3.1. We cover the other cases next.

A.4 Constrained Optimization when r ∈
(
x, ψ−1(0)

)
Recall that the seller’s problem is to maximize (2) subject to

´ r
q

[Π2(x′|x′)− Π2(q|x′)] dx′ ≥
0 for each q ∈ [x, r) (with Lagrange multiplier λr,q), and to

Π2(x|x)− lim sup
ε↘0

Π2(x− ε|x) ≥ 0

for each x ∈ (x, a(r)] (multiplier µx). Using the derivations in Section A.1.1, we write

out

Π2(x|x)− lim supε↘0 Π2(x− ε|x) =

lim supε↘0


´

[x,x̄]N−1:x>ŷ1

[p̂1 ((x; ŷ))− p̂1 ((x− ε; ŷ))] ĝ(ŷ)

+
∑N−1

k=1

[´
[x,x̄]N−1:ŷk≥x>ŷk+1

[
p̂k+1 ((x; ŷ))− p̂k+1 ((x− ε; ŷ))

]
ĝ(ŷ)

]

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for each x ∈ [x, r);

Π2(x|x)− lim supε↘0 Π2(x− ε|x) =

lim supε↘0


´

[x,x̄]N−1:ŷ1≥x>ŷ2

[
(p̂1 ((x; ŷ))− p̂1 ((x− ε; ŷ)))

+ (p̂2 ((x; ŷ))− p̂2 ((x− ε; ŷ)))

]
ĝ(ŷ)

+
∑N−1

k=2

[´
[x,x̄]N−1:ŷk≥x>ŷk+1

(
p̂k+1 ((x; ŷ))− p̂k+1 ((x− ε; ŷ))

)
ĝ(ŷ)

]


for each x ∈ [r, a(r)];

Π2(r|r)− Π2(q|r) =´
[x,x̄]N−1:ŷ1≥r>ŷ2 (p̂1 ((r; ŷ)) + p̂2 ((r; ŷ))) ĝ(ŷ)

+
∑N−1

k=2

[´
[x,x̄]N−1:ŷk≥r>ŷk+1

p̂k+1 ((r; ŷ)) ĝ(ŷ)
]

−


´

[x,x̄]N−1:ŷ1≥r,ŷ2<q (p̂1 ((q; ŷ)) + p̂2 ((q; ŷ))) ĝ(ŷ)

+
∑N−1

k=1

[´
[x,x̄]N−1:ŷ1≥r,ŷ2<r,ŷk≥q>ŷk+1

(
p̂1 ((q; ŷ))

+p̂k+1 ((q; ŷ))

)
ĝ(ŷ)

]
+

∑N−1
k=2

[´
[x,x̄]N−1:ŷ2≥r,ŷk≥q>ŷk+1

p̂k+1 ((q; ŷ)) ĝ(ŷ)
]


for each q ∈ [x, r); and

Π2(x|x)− Π2(q|x) =´
[x,x̄]N−1:x>ŷ1

(p̂1 ((x; ŷ))) ĝ(ŷ)

+
N−1∑
k=1

[ ´
[x,x̄]N−1:ŷk≥x>ŷk+1

p̂k+1 ((x; ŷ)) ĝ(ŷ)

]

−


´

[x,x̄]N−1:q>ŷ1

(p̂1 ((q; ŷ))) ĝ(ŷ)

+
N−1∑
k=1

[ ´
[x,x̄]N−1:ŷk≥q>ŷk+1

p̂k+1 ((q; ŷ)) ĝ(ŷ)

]


for each x ∈ [x, r) and q ∈ [x, x). Note that for x ≥ r, the integrals do not include

the case x > ŷ1, because the highest-type buyer is sure to get an object when his type

is above r.
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A.4.1 When Zr(r) ≥ 0

In this case, Theorem 3 specifies allocation whenever either i) x̂1 ≥ r > x̂3, or ii)

x̂3 ≥ r and ψ (x̂2) + x̂2 − x̂3 ≥ 0, and not otherwise. We make the following guesses

for the values of the Lagrange multipliers: for all x ∈ [x, r), λr,x = µx = 0; and for

x ∈ [r, a(r)], µx =
´ a(r)

x
N · [r − x′ − ψ(x′)] f(x′)dx′. That is, only the immediate

downward constraints for type r and above bind. The intuition behind that guess

for the values of µx is as follows: suppose that we relaxed the constraint that type

x ∈ [r, a(r)] must have a weakly higher chance of getting an object if he reports

truthfully than if he underreports to x − ε. Then the seller could not allocate when

x̂2 = x and x̂3 < r, and thus avoid earning the negative marginal revenue x+ψ(x)−r
in that case. There is an additional benefit: for type x+ ε, now underreporting does

not lead to allocation, and so the seller is free to not allocate when x̂2 = x + ε and

x̂3 < r, without violating the constraint for type x+ ε. Iterating, we see that relaxing

the constraint for the single type x allows the seller to avoid the negative marginal

revenue x′ + ψ(x′)− r for every type x′ between x and a(r).

In what follows, the key feature of µx is that µx−µx+0 = N ·[r − x− ψ(x)] f(x)dx.

For example, suppose that x̂2 ∈ [r, a(r)). Allocating to either of the top two bidders in

that case helps with the constraint for type x̂2 (he gets an item by telling the truth),

but it hurts with the constraint for a slightly higher type (he could get an item by

underreporting his type as x̂2). The net marginal effect is the difference between µx̂2

and µx̂2+0.

We use that key feature repeatedly as we next take the partial derivative of the

seller’s expected revenue with respect to p̂k (x̂), given any vector of ordered types x̂,

and plug in those guesses. Note that for any x̂ and any k, N · f(x̂k) · ĝ(x̂−k) = f̂(x̂).

1. If x̂2 ≥ a(r), then ∂ER(X̂)
δp̂1(x̂)

= ∂ER(X̂)
δp̂2(x̂)

= [x̂2 + ψ (x̂2)−max {x̂3, r}] f̂(x̂).
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2. If x̂2 ∈ [r, a(r)), then

∂ER(X̂)

δp̂1 (x̂)
=
∂ER(X̂)

δp̂2 (x̂)
= [x̂2 + ψ (x̂2)−max {x̂3, r}] f̂(x̂) + ĝ(x̂−2)µx̂2 − ĝ(x̂−2)µx̂2+0

= [x̂2 + ψ (x̂2)−max {x̂3, r}] f̂(x̂)

+ ĝ(x̂−2)N · [r − x̂2 − ψ(x̂2)] f(x̂2)

= f̂(x̂) · [x̂2 + ψ (x̂2)−max {x̂3, r}+ (r − x̂2 − ψ(x̂2))]

= f̂(x̂) · [r −max {x̂3, r}] .

3. If x̂1 ≥ r and x̂2 < r, then ∂ER(X̂)
δp̂1(x̂)

= rf̂(x̂) > 0.

4. In every case above, for all k > 2 such that x̂k ≥ a(r),

∂ER(X̂)

δp̂k (x̂)
= ψ (x̂k) f̂(x̂) ≤ ∂ER(X̂)

δp̂2 (x̂)
;

for all k > 2 such that x̂k ∈ [r, a(r)),

∂ER(X̂)

δp̂k (x̂)
= ψ (x̂k) f̂(x̂) + ĝ(x̂−k)µx̂k − ĝ(x̂−k)µx̂k+0

= ψ (x̂k) f̂(x̂) + ĝ(x̂−k)N · [r − x̂k − ψ(x̂k)] f(x̂k)

= f̂(x̂) · [ψ (x̂k) + (r − x̂k − ψ(x̂k))] = f̂(x̂) · [r − x̂k] < 0;

and for all k such that x̂k < r, ∂ER(X̂)
δp̂k(x̂)

= ψ (x̂k) f̂(x̂) < 0.

The marginal revenues above are weakly positive in each case where Theorem 3 spec-

ifies allocation, and they are weakly negative in each case where Theorem 3 specifies

no allocation. Thus, our guesses for the values of the Lagrange multipliers, together

with the allocation rule in Theorem 3, form a solution to the seller’s constrained

optimization problem.

29



A.4.2 When Zr(r) ≤ 0

In this case, Theorem 2 specifies allocation if and only if ψ (x̂2)+ x̂2−max {r, x̂3} ≥ 0.

The derivative of Zr(x∗) is given by zr (x∗) f (x∗), where the function zr (x∗) is defined

as

zr(x∗) ≡ −rF (r) + (N − 1)

min{x∗,a(r)}ˆ

r

[r − x′ − ψ(x′)]f(x′)dx′.

The function zr (x∗) is strictly increasing for x∗ < a(r) and constant for x∗ ≥ a(r).

When Zr (x̄) − Zr(r) = 0 − Zr(r) ≥ 0, therefore, it must be that zr (a(r)) ≥ 0:

otherwise Zr(x∗) would be strictly decreasing throughout. We will use the inequality

zr (a(r)) ≥ 0 below.

We make the following guesses for the Lagrange multipliers: for x ∈ [x, r),

λr,x = r N
N−1

f (x) and µx =
´ x
x
r N
N−1

F (x′)dx′; and for x ∈ (r, a(r)], µx =
´ a(r)

x
N · [r − x′ − ψ(x′)] f(x′)dx′.

The differences relative to the Zr(r) ≥ 0 case are that now all the downward con-

straints bind for type r, and the immediate downward constraints bind for types

below r. Allocating to either of the top two bidders when x̂2 = r helps with all the

downward constraints for type r, because he gets an item by telling the truth. On

the other hand, allocating to the highest bidder when x̂1 ≥ r > x̂2 hurts with a

constraint, because a bidder with type r gets an object by underreporting his type as

x̂2. The intuition for our guess of the value of λr,x is that if we relaxed the constraint,

then the seller could allocate to the high bidder whenever x̂1 ≥ r > x̂2 and earn the

corresponding marginal revenue r.

As we take the partial derivative of the seller’s expected revenue with respect

to p̂k (x̂) and plug in those guesses, we again use the feature that µx − µx+0 =

N · [r − x− ψ(x)] f(x)dx for x ∈ (r, a(r)]. Similarly, we use the feature that for

x ∈ [x, r), µx+0 − µx = r N
N−1

F (x)dx.

1. If x̂2 ≥ a(r), then

∂ER(X̂)

δp̂1 (x̂)
= [x̂2 + ψ (x̂2)−max {x̂3, r}] f̂(x̂)−

∑
k:x̂k<r

[ĝ(x̂−k)λr,x̂k ] ≤ ∂ER(X̂)

δp̂2 (x̂)
;
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∂ER(X̂)

δp̂2 (x̂)
= [x̂2 + ψ (x̂2)−max {x̂3, r}] f̂(x̂).

2. If x̂2 ∈ (r, a(r)), then

∂ER(X̂)

δp̂1 (x̂)
=

(
[x̂2 + ψ (x̂2)−max {x̂3, r}] f̂(x̂) + ĝ(x̂−2)µx̂2

−ĝ(x̂−2)µx̂2+0 −
∑

k:x̂k<r
[ĝ(x̂−k)λr,x̂k ]

)
≤ ∂ER(X̂)

δp̂2 (x̂)
;

∂ER(X̂)

δp̂2 (x̂)
= [x̂2 + ψ (x̂2)−max {x̂3, r}] f̂(x̂) + ĝ(x̂−2)µx̂2 − ĝ(x̂−2)µx̂2+0

= [x̂2 + ψ (x̂2)−max {x̂3, r}] f̂(x̂) + ĝ(x̂−2)N · [r − x̂2 − ψ(x̂2)] f(x̂2)

= f̂(x̂) · [x̂2 + ψ (x̂2)−max {x̂3, r}+ (r − x̂2 − ψ(x̂2))]

= f̂(x̂) · [r −max {x̂3, r}] .

3. If x̂2 = r, then

∂ER(X̂)

δp̂1 (x̂)
= [r + ψ (r)− r] f̂(x̂)− ĝ(x̂−2)µr+0 + ĝ(x̂−2)

ˆ r

x

λr,x′dx
′ −

N∑
k=3

[ĝ(x̂−k)λr,x̂k ]

≤ ∂ER(X̂)

δp̂2 (x̂)
;
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∂ER(X̂)

δp̂2 (x̂)
= [r + ψ (r)− r] f̂(x̂)− ĝ(x̂−2)µr+0 + ĝ(x̂−2)

ˆ r

x

λr,x′dx
′

= [r + ψ (r)− r] ĝ(x̂−2)Nf(r)− ĝ(x̂−2)

ˆ a(r)

r+0

N · [r − x− ψ(x)] f(x)dx

+ ĝ(x̂−2)F (r)
N

N − 1
r

= −ĝ(x̂−2)

ˆ a(r)

r

N · [r − x− ψ(x)] f(x)dx+ ĝ(x̂−2)F (r)
N

N − 1
r

= ĝ(x̂−2)
N

N − 1

[
F (r)r − (N − 1)

ˆ a(r)

r

[r − x− ψ(x)] f(x)dx

]
= −ĝ(x̂−2)

N

N − 1
zr (a(r)) ≤ 0.

4. If x̂1 ≥ r and x̂2 < r, then

∂ER(X̂)

δp̂1 (x̂)
= rf̂(x̂)−

N∑
k=2

[ĝ(x̂−k)λr,x̂k ] = rf̂(x̂)−
N∑
k=2

[
f̂(x̂)

1

N − 1
r

]
= f̂(x̂) · [r − r] = 0.

5. In every case above, for all k > 2 such that x̂k ≥ a(r),

∂ER(X̂)

δp̂k (x̂)
= ψ (x̂k) f̂(x̂) ≤ ∂ER(X̂)

δp̂2 (x̂)
;

for all k > 2 such that x̂k ∈ (r, a(r)],

∂ER(X̂)

δp̂k (x̂)
= ψ (x̂k) f̂(x̂) + ĝ(x̂−k)µx̂k − ĝ(x̂−k)µx̂k+0

= ψ (x̂k) f̂(x̂) + ĝ(x̂−k)N · [r − x̂k − ψ(x̂k)] f(x̂k)

= f̂(x̂) · [ψ (x̂k) + (r − x̂k − ψ(x̂k))] = f̂(x̂) · [r − x̂k] < 0;
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for all k > 2 such that x̂k = r,

∂ER(X̂)

δp̂k (x̂)
= [ψ (r)] f̂(x̂)− ĝ(x̂−k)µr+0 + ĝ(x̂−k)

ˆ r

x

λr,x′dx
′

= [r + ψ (r)− r] ĝ(x̂−k)Nf(r)− ĝ(x̂−k)

ˆ a(r)

r+0

N · [r − x− ψ(x)] f(x)dx

+ ĝ(x̂−k)F (r)
N

N − 1
r

= −ĝ(x̂−k)

ˆ a(r)

r

N · [r − x− ψ(x)] f(x)dx+ ĝ(x̂−k)F (r)
N

N − 1
r

= ĝ(x̂−k)
N

N − 1

[
F (r)r − (N − 1)

ˆ a(r)

r

N · [r − x− ψ(x)] f(x)dx

]
= −ĝ(x̂−k)

N

N − 1
zr (a(r)) ≤ 0;

and for all k such that x̂k < r,

∂ER(X̂)

δp̂k (x̂)
= ψ (x̂k) f̂(x̂)− ĝ(x̂−k)µx̂k+0 + ĝ(x̂−k)µx̂k

+ ĝ(x̂−k)

ˆ x̂k

x

λr,x′dx
′ − ĝ(x̂−k)

ˆ r

x̂k

λr,x̂kdx
′

= ψ (x̂k) f̂(x̂)− ĝ(x̂−k)

[
r

N

N − 1
F (x̂k)

]
+ ĝ(x̂−k)F (x̂k)

N

N − 1
r − ĝ(x̂−k)

ˆ r

x̂k

λr,x̂kdx
′ ≤ ψ (x̂k) f̂(x̂) < 0.

The marginal revenues above are weakly positive in each case where Theorem 2 spec-

ifies allocation, and they are weakly negative in each case where Theorem 2 specifies

no allocation. Thus, our guesses for the values of the Lagrange multipliers, together

with the allocation rule in Theorem 2, form a solution to the seller’s constrained

optimization problem.
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B Proving Theorem 5

Theorems 1, 2, and 3 show that seller 1 has a best response to any r that seller

2 chooses. To establish existence of an equilibrium, then, we need only show that

there exists a maximizer of R2(r), seller 2’s revenue when she sets reserve price r and

seller 1 best responds. (In case seller 1 has multiple best responses, let her choose

one that maximizes seller 2’s revenue.) A maximizer exists because R2(r) is upper

semicontinuous: first, note that seller 2’s revenue is continuous in r and in seller 1’s

allocation rule. For r > ψ−1(0), seller 1’s allocation rule is constant (Theorem 1).

For r < ψ−1(0), Theorems 2 and 3 show that the sets of values of r where cutoffs

x∗ = r and x∗ = x̄, respectively, are optimal for seller 1 are closed (because Zr(r)

is continuous), and that within each set seller 1’s allocation rule is continuous in r.

Finally, seller 1’s allocation rule is continuous in r at r = ψ−1(0):

lim
r↗ψ−1(0)

Zr(r) = lim
r↗ψ−1(0)

rF (r) [1− F (r)] > 0,

and Theorem 3 then implies that for r just below ψ−1(0), x∗ = r.

Thus, R2(r) is upper semicontinuous, and so it has a maximizer r∗ on the compact

set [x, x̄]. Because R2(r) = R2(x) for all x < x, and R2(r) = R2(x̄) for all r > x̄, r∗

is the global maximizer of R2(r).

Next, we show that r∗ < ψ−1(0) by establishing that R2(r) is decreasing in r at

r = ψ−1(0) and above. For r ≥ ψ−1(0), Theorem 1 implies that seller 2’s revenue is

ˆ x̄

r

[
rF3|x(2)(r) +

ˆ x(2)

r

x̂3f3|x(2)(x̂3)dx̂3

]
f2(x̂2)dx̂2.
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The derivative with respect to r is

−rf2(r) +
´ x̄
r

[
F3|x(2)(r)f2(x̂2)dx̂2

]
= N(N − 1) (1− F (r)) [F (r)]N−2 f(r)

{
−r +

´ x̄
r

[(
1−F (x̂2
1−F (r)

)
)
f(x̂2)
f(r)

dx̂2

]}
< N(N − 1) (1− F (r)) [F (r)]N−2 f(r)

{
−r +

´ x̄
r
f(x̂2)
f(r)

dx̂2

}
= −N(N − 1) (1− F (r)) [F (r)]N−2

{
r − 1−F (r)

f(r)

}
= −N(N − 1) (1− F (r)) [F (r)]N−2 ψ(r) ≤ 0.

The last inequality follows from the assumption that ψ is increasing.

As noted above, x∗ = r for r just below ψ−1(0), and so seller 2’s revenue in that

case is

´ a(r)

r

[
rF3|x(2)(r) + x̂2

[
1− F3|x(2)(r)

]]
f2(x̂2)dx̂2

+
´ ψ−1(0)

a(r)

 rF3|x(2)(r) + x̂2

[
1− F3|x(2)(x̂2 + ψ (x̂2))

]
+

´ x̂2+ψ(x̂2)

r
x̂3f3|x(2)(x̂3)dx̂3

 f2(x̂2)dx̂2

+
´ x̄
ψ−1(0)

[
rF3|x(2)(r) +

´ x(2)
r

x̂3f3|x(2)(x̂3)dx̂3

]
f2(x̂2)dx̂2.

The derivative with respect to r evaluated at r = ψ−1(0) (the value at which a(r) = r)

is
−ψ−1(0)f2(ψ−1(0)) +

´ x̄
ψ−1(0)

[
F3|x(2)(ψ

−1(0))f2(x̂2)dx̂2

]
< −N(N − 1) (1− F (ψ−1(0))) [F (ψ−1(0))]

N−2
ψ(ψ−1(0)) = 0.

Thus, R2(r) is strictly decreasing in r for r ≥ ψ−1(0), so r∗ < ψ−1(0).
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